If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=100+10t-16t^2
We move all terms to the left:
0-(100+10t-16t^2)=0
We add all the numbers together, and all the variables
-(100+10t-16t^2)=0
We get rid of parentheses
16t^2-10t-100=0
a = 16; b = -10; c = -100;
Δ = b2-4ac
Δ = -102-4·16·(-100)
Δ = 6500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6500}=\sqrt{100*65}=\sqrt{100}*\sqrt{65}=10\sqrt{65}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{65}}{2*16}=\frac{10-10\sqrt{65}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{65}}{2*16}=\frac{10+10\sqrt{65}}{32} $
| 22=13-x | | 10+5b=20-3b | | 10,2p-14,2=27,8+3,2p | | 5x=27+2 | | 4(2x+7)=-39+35 | | 91-5x=66 | | 35+y=90 | | 3x-5(-4x+10)=13 | | 55+y=90 | | -4y+7-5y=10+y | | 7-r=5 | | 2(4x-1)=-32+2x | | 1/2w+7=2w–2 | | 7x−(x−12)=32−4x | | -25=6a-43 | | 5x—4=36 | | 2x+1=x+ | | 1/3x=8/9 | | 6p=216 | | 4(1)+10y=1 | | 3(x+5)=8x-2 | | -31/2b+2/3=51/2+5/6 | | t÷6-8=9 | | 10x+1=7x-2 | | 6=10k | | 2,3x-4,7+1,8x=8,4x-1,6+1,2 | | 2(x-6)-18=5-5x | | 9x-7=6x-4 | | 7d−6d−1=10 | | -15=-5/8x | | Z^4+1=-i | | 125-12+4y+7=180 |